Модуль оптоизолированного аналогового ввода RM64AD

Руководство пользователя

АО КАСКОД 2001 Санкт-Петербург

АО КАСКОД

196625, Санкт-Петербург, Павловск, Фильтровское шоссе, 3

тел.: (812) 476-0795, (812) 466-5784, факс: (812) 465-3519

E-mail: cascod@online.ru

kaskod@spb.cityline.ru

http://www.kaskod.ru

Принятые сокращения

ΑЦП Аналого-цифровой преобразователь ОЗУ (RAM) Оперативное запоминающее устройство ПЗУ (ROM) -Постоянное запоминающее устройство **GPT** Блок таймеров (General Purpose Timer unit)

Свободный контакт nc GND Общий провод питания

VCC Напряжение питания +5 вольт

Сигнал "Сброс" Res

NMI Немаскируемое прерывание лог.1 Уровень логической единицы Уровень логического нуля лог.0

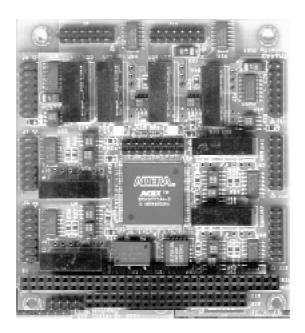
Запрос прерывания БΑ Базовый адрес MUX Мультиплексор

IRQ

103Fh Запись в шестнадцатеричном формате

Содержание Страница

1.	Назначение	6
2.	Технические характеристики	7
3.	Структурная схема модуля	8
4.	Выбор базового адреса доступа к модулю RM64AD	10
5.	Входные цепи АЦП оптоизолированного канала	11
6.	Установка векторов прерывания	12
7.	Доступ к модулю со стороны шины PC104 (ISA)	13
8.	Внутренние регистры модуля	14
9.	Питание модуля	22
10.	Сброс модуля	22
11.	Внешние разъемы и переключатели	23
12.	Комплект поставки	29
13.	Варианты исполнения контроллера	29
14.	Габаритные и установочные размеры	30
15	Поиложения	31



Назначение

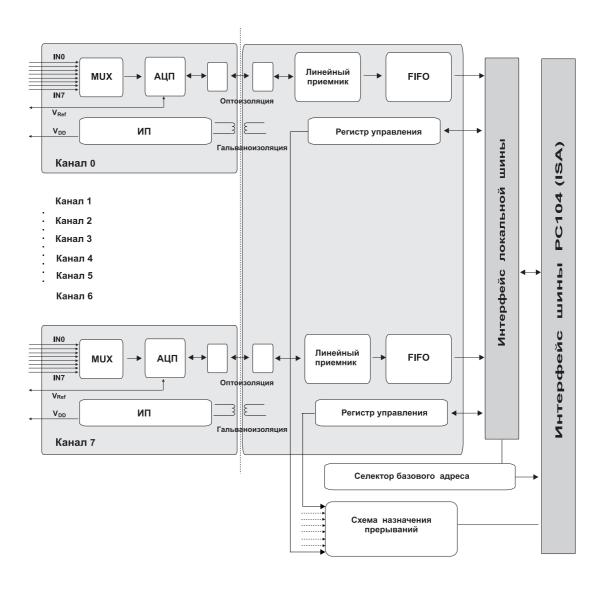
Модуль RM64AD предназначен для построения:

- систем сбора и обработки информации,
- следящих систем,
- систем управления и синхронизации энергетических объектов,
- распределенных систем управления и т.д.

Общий вид модуля RM64AD представлен на рисунке.

Внешний вид модуля RM64AD

6


2 Технические характеристики

- Модуль ввода в формате РС/104 (размер платы 90 х 96 мм).
- 64 входа 12-разрядных аналого-цифровых преобразователей (АЦП).
- 8 каналов оптоизолированных друг от друга и от системной шины. Каждый оптоизолированный канал имеет 8 входов.
- Встроенный источник опорного напряжения для каждого канала 2,5 B ± 0,05 B.
- Входные напряжения от 0 В до 1,2 ÷ 5 Вольт.
 От 0 В до 2,5 Вольт с внутренним источником опорного напряжения.
 Для каждого канала можно выбирать отдельно.
 Зависят от используемого опорного напряжения.
- Размер буфера АЦП каждого канала 256 слов.
- 16-разрядный шинный интерфейс PC/104, позволяющий подключать различные модули в формате PC/104. Через переходную плату возможно подключение к шине ISA.
- Питание от одного источника +5 В.
- Диапазон рабочих температур: 0°C +70°C, (- 40°C +85°C по заказу).

Структурная схема модуля

Структурная схема модуля приведена на рисунке.

Модуль **RM64AD** состоит из следующих устройств:

– Канал 0 ... Канал 7

оптоизолированный 8-входовый 12-разрядный АЦП с отдельным источником питания.

- FIFO

буфер хранения результата канала содержит 256 слов

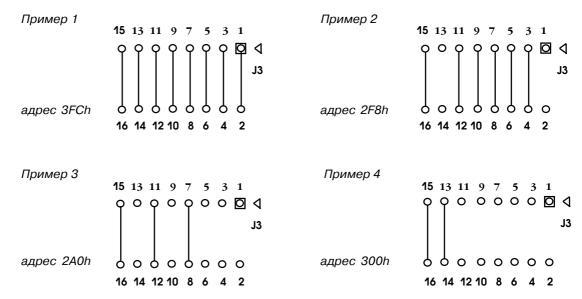
- Внутренние регистры
- Селектор базового адреса
- Схема назначения прерываний
- Интерфейс локальной шины
- Интерфейс шины PC104 (ISA)

Выбор базового адреса доступа к модулю RM64AD

Модуль оптоизолированного аналогового ввода RM64AD подключается по шине PC104 в область портового пространства PC-совместимого устройства.

Для выбора базового адреса необходимо установить перемычки на разъеме ЈЗ.

Базовый адрес определяется следующим образом:


Адрес	A9	A8	A7	A6	A5	A4	A3	A2	Α0	
Базовый		выбо	ор адр	еса пер	ремыч	ками				
адрес		на п	пате						0	

Применение различных комбинаций младшего адреса А1 определяет сигналы обращения к регистрам модуля.

При отсутствии перемычек на разъеме J4 все входы адресного дешифратора установлены в 0.

Установка перемычек приводит к установке соответствующего бита в 1.

Примеры:

Применение различных комбинаций младшего адреса А1 определяет различные сигналы обращения.

Адрес	A9A2, A0	A1	
Б.А. + 0	Б.А	0	
Б.А. + 2	Б.А	1	

Входные цепи АЦП оптоизолированного канала

Модуль содержит восемь идентичных каналов, оптоизолированных друг от друга и от системной шины.

В каждом оптоизолированном канале установлен 12-разрядный 8-ми входовый АЦП.

Входные сигналы для любого из 64 входов могут принимать значения от 0 до REFI/O.

Опорное напряжение REFI/O может быть внутренним 2.5 ± 0.05 Вольта или внешним от 1.2 до 5 Вольт. Использование REFI/O для каждого канала программируется пользователем установкой бита REF в регистре управления (конфигурирования) канала.

Не используемые входы рекомендуется соединить с AGND для избежания помех.

На контакты 14 входных разъемом J6, J7, J8, J9, J10, J11, J12, J13 модуля выведено отдельно для каждого канала напряжение 5 B + 15% (плюс).

Минус этого напряжения – любой из контактов AGND соответствующего канала.

Максимально допустимый ток нагрузки 20 миллиампер для каждого канала.

Защита от короткого замыкания отсутствует.

Установка векторов прерывания

Выбор вектора прерывания осуществляется установкой внутренних регистров модуля.

Для выбора необходимого вектора прерывания необходимо запрограммировать соответствующие внутренние регистры модуля. Смотри раздел – «Внутренние регистры».

Доступ к модулю со стороны шины PC104 (ISA)

Доступ к модулю со стороны шины PC104 (ISA)

В пространстве адресов ввода/вывода (порты) РС совместимого устройства плата представлена двумя шестнадцатибитовыми регистрами – RD регистр данных и RA регистр адреса .

Байтовый доступ к регистрам невозможен.

Адреса регистров задаются установкой переключателями на плате модуля базового адреса (БА) в диапазоне адресов от 0h до 03FEh.

Регистр данных RD

Регистр данных RD с адресом равным базовому адресу используется для обмена данными.

Бит	Функция
DATA	Запись и чтение данных

Регистр адреса RA

Младший байт регистра адреса RA с адресом равным (БА + 2) используется для выбора внутренних регистров модуля, т.е. как адресный.

Старший байт регистра адреса RA с адресом равным (БА + 2) используется для чтения флагов готовности (сигнал состояния буферов FIFO) каналов.

Запись в старшую часть регистра RA не изменяет состояния флагов.

RA (БА+2)					Зна	ачен	іие г	юсл	е сб	poca	: 00	00н
15 14 13 12	2 11	10	9	8	7	6	5	4	3	2	1	0
ST	ATCH		ı			1		A	DDR	1	ı	

Бит	Функция					
STATCH	Статус буфера результата канала х , где х = 0, 1, 2, 3, 4, 5, 6, 7 — номер канала. Номер бита минус 8 соответствует номеру канала х. 1 Данные в буфере отсутствуют					
ADDR	 Данные в буфере присутствуют Адрес внутреннего регистра 					
	От 0h до 27h					

Р Внутренние регистры модуля

Для доступа к ресурсам модуля используются внутренние регистры.

Для доступа к внутренним регистрам необходимо записать адрес регистра в регистр адреса RA и после этого записывать или считывать данные, используя регистр данных RD.

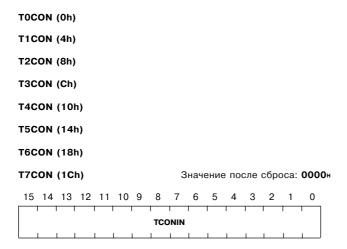
Так как такая последовательность команд может быть прервана, то следует либо запретить прерывания до завершения обмена, либо в программе обработки прерывания сохранять и восстанавливать текущее содержимое регистра адреса RA.

Относительно регистра адреса RA внутренние регистры располагаются в памяти следующим образом:

- **0h** Регистр управления таймером времени преобразования канала 0.
- **1h** Регистр управления таймером запуска преобразований канала 0.
- **2h** Регистр результата АЦП канала 0.
- **3h** Регистр управления (конфигурирования) канала 0.
- **4h** Регистр управления таймером времени преобразования канала 1.
- **5h** Регистр управления таймером запуска преобразований канала 1.
- **6h** Регистр результата АЦП канала 1.
- **7h** Регистр управления (конфигурирования) канала 1.
- **8h** Регистр управления таймером времени преобразования канала 2.
- **9h** Регистр управления таймером запуска преобразований канала 2.
- **Ah** Регистр результата АЦП канала 2.
- **Bh** Регистр управления (конфигурирования) канала 2.
- **Ch** Регистр управления таймером времени преобразования канала 3.
- Dh Регистр управления таймером запуска преобразований канала 3.
- **Eh** Регистр результата АЦП канала 3.
- **Fh** Регистр управления (конфигурирования) канала 3.
- **10h** Регистр управления таймером времени преобразования канала 4.
- **11h** Регистр управления таймером запуска преобразований канала 4.
- **12h** Регистр результата АЦП канала 4.
- **13h** Регистр управления (конфигурирования) канала 4.
- **14h** Регистр управления таймером времени преобразования канала 5.
- **15h** Регистр управления таймером запуска преобразований канала 5.
- **16h** Регистр результата АЦП канала 5.
- **17h** Регистр управления (конфигурирования) канала 5.
- **18h** Регистр управления таймером времени преобразования канала 6.
- **19h** Регистр управления таймером запуска преобразований канала 6.
- **1Ah** Регистр результата АЦП канала 6.
- **1Bh** Регистр управления (конфигурирования) канала 6.
- **1Ch** Регистр управления таймером времени преобразования канала 7.
- **1Dh** Регистр управления таймером запуска преобразований канала 7.
- **1Eh** Регистр результата АЦП канала 7.
- **1Fh** Регистр управления (конфигурирования) канала 7.
- **20h** Регистр выбора номера прерывания для каналов 0, 1, 2, 3.
- **21h** Регистр выбора номера прерывания для каналов 4, 5, 6, 7.
- **22h** Регистр активирования нагрузок
- **23h** Регистр состояния запросов прерываний
- **24h** Регистр визуализации запросов прерывания. Только чтение
- **25h** Регистр визуализации запросов прерывания. Только чтение
- **26h** Регистр визуализации запросов прерывания. Только чтение
- **27h** Регистр визуализации запросов прерывания. Только чтение

В адресах 24h, 25h, 26h, 27h находится один и тот же регистр.

Все каналы идентичны и отличаются только адресами внутренних регистров.



Регистры управления таймером времени преобразования

Таймер времени преобразования задает скорость преобразованя АЦП. Тактовая частота этого таймера 20 МГц. Загрузка нулей в регистр управления таймером останавливает его, 1 дает длительность 100 нс. Каждое последующее увеличение на единицу прибавляет 50 нс к длительности тактового импульса. Максимально допустимая скорость преобразования данных в АЦП 500 нс (2 МГц) требует минимального коэффициент деления 9.

Установленный период может быть прочитан, а текущее значение таймера нет.

Номер регистра управления таймером времени преобразования соответтсвует номеру канала: TOCON – соответствует 0 каналу, T1CON – соответствует 1 каналу и т.д.

Бит	Функ	ция						
TCONIN	Коэффициент деления для таймера скорости преобразования канала							
	0	Таймер ос ⁻	гановлен					
	1	100 нс	не использовать					
	2	150 нс	не использовать					
	3	200 нс	не использовать					
	4	250 нс	не использовать					
	5	300 нс	не использовать					
	6	350 нс	не использовать					
	7	400 нс	не использовать					
	8	450 нс	не использовать					
	9	500 нс	Максимальная скорость					
	0Ah	550 нс						
	FFFF	1	Минимальная скорость					

Регистры управления таймером запуска преобразований

Таймер запуска преобразований задает скорость повторения преобразований АЦП. Тактовая частота этого таймера 2 МГц. Загрузка нулей в регистр управления таймером останавливает его, 1 дает длительность 1000 нс. Каждое последующее увеличение на единицу прибавляет 500 нс к длительности периода запускающих импульсов. Соответственно, минимальное значение для этого таймера – 15, а частота преобразования – 125 килослов/сек.

Установленный период может быть прочитан, а текущее значение таймера нет.

После записи нового значения оно будет использовано для формирования следующего и последующих тактов, если таймер работает, и с первого, если таймер остановлен.

Замечание:

Один цикл преобразования требует 16,5 тактов времени преобразования. Стартовый импульс, пришедший раньше этого времени, игнорируется.

Номер регистра управления таймером скорости преобразования соответсвует номеру канла: T0CON – соответствует 0 каналу, T1CON – соответствует 1 каналу и т.д.

ТОRUN (1h)

T1RUN (5h)

T2RUN (9h)

T3RUN (Dh)

T4RUN (11h)

T5RUN (15h)

T6RUN (19h)

T7RUN (1Dh)

Значение после сброса: 0000н

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Бит	Функ	ция	
TRUNIN	Коэф	фициент дел	ения для таймера запуска преобразования канала
	0	Таймер ост	ановлен
	1	1000 нс	не использовать
	2	1500 нс	не использовать
	3	2000 нс	не использовать
	4	2500 нс	не использовать
	5	3000 нс	не использовать
	6	3500 нс	не использовать
	Eh	7500 нс	не использовать
	Fh	8000 нс	Максимальная частота запуска преобразования
	10h	8500 нс	
	FFFF	 1	 Минимальная частота запуска преобразования

Регистры результата АЦП

Регистр, в который поступают данные результата преобразования АЦП. Данные представляют собой беззнаковое число, выравненное по младшему биту. Таким образом, при 12-разрядном АЦП старшие 4 бита всегда равны 0.

Каждый канал имеет буфер FIFO размером 256 слов. Каждое чтение из него дает следующее конвертированное значение.

При чтении последнего результата в регистре RA (адрес: $\mathsf{FA} + 2$) устанавливается в единицу бит, номер которого равен номеру канала + 8. Т.е. при исчерпании данных в канале 0, устанавливается в единицу бит номер 8, при исчерпании данных в канале 1, устанавливается в единицу бит номер 9 и т.д.

Запись в этот регистр безрезультативна.

Номер регистра результата АЦП соответствует номеру канала: ADDAT0 – соответствует 0 каналу, ADDAT1 – соответствует 1 каналу и т.д.

Бит	Функция
ADRES	Результат преобразования АЦП (12 бит)

После сброса состояние буферов неопределено.

Для очистки буферов после сброса следует произвести однократное чтение регистров ADDAT0 \dots ADDAT7.

Регистр управления (конфигурирования) канала

ADCONO (3h)
ADCON1 (7h)
ADCON2 (Bh)
ADCON3 (Fh)
ADCON4 (13h)
ADCON5(17h)
ADCON6 (1Bh)
ADCON7 (1Fh)

Значение после сброса: 0000н

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	AR	TAR	TSEL		COM	IFIFO) 	DR	IRQ	ER	ECLK	REF		CHNE	3

Бит	Функция
R	Старт. Одиночный запуск преобразования.
	 Старт преобразования. Остается равным 1, пока преобразовани не будет завершено. В режиме автостарта также устанавливается на время преобразования.
AR	Автостарт. Переключение режимов автоматического и командного старта преобразования.
	0 Запуск на преобразование от команды, битом R 1 Автозапуск от таймера.
TAR	Таймер автостарта. Старт/стоп таймера автозапуска.
	0 Таймер остановлен.
TSEL	Таймер выборки. Старт/стоп таймера скорости преобразования.
	0 Таймер остановлен.
COMFIFO	Компаратор FIFO. Уровень срабатывания компаратора запросов на прерывание. Значению
	0000 соответствует 1 отсчет в буфере,
	0001 запрос, если больше 16,
	0010 запрос, если больше 32, и т.д.
DR	Разрешение двойного старта АЦП.
	Запись 1 в этот бит автоматически инициирует повтор команды для получен
	текущего преобразования. По окончанию преобразования бит сбрасывается
IRQ	Запрос прерывания.
	1 Разрешение генерации запросов прерываний.
	0 Запрешение генерации запросов прерываний
ER	Внешний старт.
	1 Используется стартовый импульс от канала с меньшим номером Канал 0 получит стартовый импульс от канала 7. Такое включение предназначенно для синхронного преобразования нескольких каналов
	Недопускается одновременная установка во всех каналах!
ECLK	Внешние такты.
	 Используются тактовые импульсы от канала с меньшим номером Канал 0 получит тактовые импульсы от канала 7. Такое включение предназначенно для синхронного преобразования нескольких каналов
	Недопускается одновременная установка у всех каналов!
REF	Выбор опорного напряжения
	0 Для преобразования используется внутреннее
	1 Используется внешнее опорное напряжение
CHNR	Номер входа: 000 вход 0
	001 вход 1
	111 вход 7

Регистры выбора номера прерывания

Группа из 4-х битов этих регистров определяет номер прерывания с 0 по 15 для соответствующего канала.

Для шины PC104 (ISA) доступны только 3-7, 9-12, 14, 15.

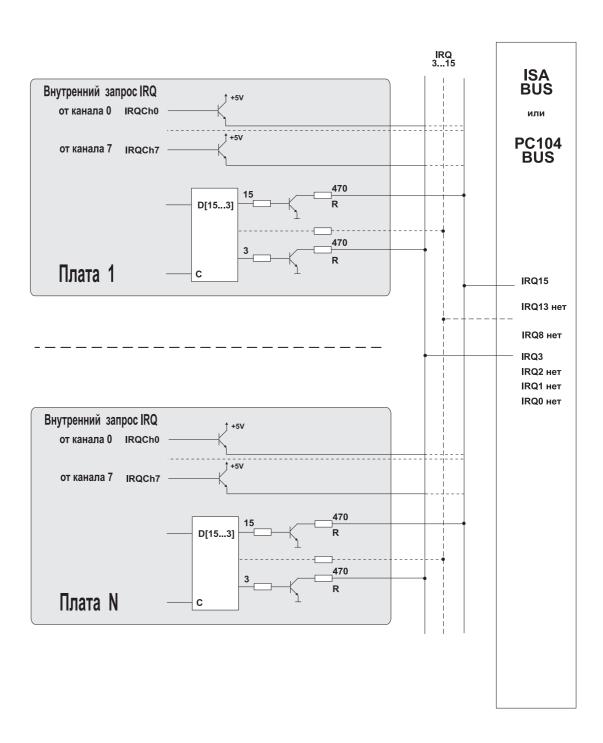
Установка группы битов в номера 0, 1, 2, 8, 13, соответсвующие отсутствующим на шине, запрещает прерывания по этому каналу.

Один и тот же номер прерывания может быть назначен нескольким или всем каналам одновременно. Несколько модулей так же могут использовать один и тот же номер прерывания.

Бит	Функция
CHxIRQ	Установка номера прерывания для канала х, где x = 0,1, 2, 3, 4, 5, 6, 7 – номер канала 0h, 1h, 2h, 8h, Dh – Запрет прерывания 3h, 4h, 5h, 6h, 7h, 9h, Ah, Bh, Ch, Eh, Fh номер прерывания

Регистр подключения нагрузочных резисторов ко входам прерываний

Регистр подключения нагрузочных резисторов ко входам прерываний позволяет работать нескольким модулям с одним входом прерывания.


Для включения нагрузочного резистора ко входу прерывания следует установить бит с номером, соответствующим необходимому номеру прерывания (вектору).

Это следует делать обязательно, если плата является единственным источником, для соответствующего вектора (векторов).

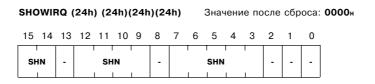
Бит	Функция			
NMBRIRQ	Подключение нагрузочного резистора по входу прерывания 1 Нагрузочный резистор подключен для вектора прерывания, соответствующего номеру бита 0 Нагрузочный резистор не подключен			

Регистр состояния запроса прерываний

Регистр состояния запросов прерываний при разделении вектора прерывания позволяет определить номер канала или каналов, запросивших прерывание.

Если запросов нет, то регистр считывается как 0. Если все каналы запросят прерывания, в регистре будет 000FFh.

Бит	Функция
REQCH	Установка запроса прерывания для канала х, х – номер канала, запросившего прерывание. 1 Канал с номером, соответствующим номеру бита, запрашивает прерывание 0 Запроса нет


Регистр визуализации запросов прерывания

Регистр визуализации запросов прерывания **SHOWIRQ** позволяет прочитать текущее состояние запросов прерывания, доступных на шине PC104 (ISA).

Правильно считываются только прерывания с номерами 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15. Остальные биты недостоверны.

Для данного регистра доступно только чтение.

Обращение к регистру **SHOWIRQ** возможно по любому из адресов: **24h, 25h, 26h, 27h.**

Бит
SHN

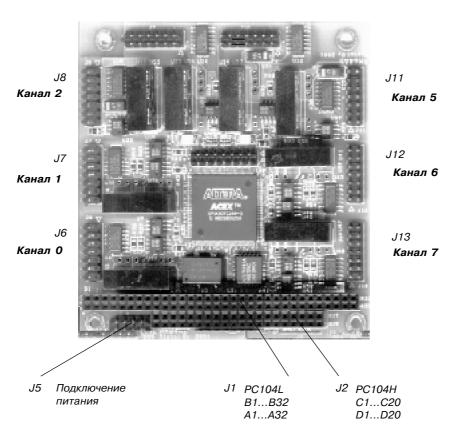
Питание модуля

Модуль запитывается по шине РС104 от напряжения +5 Вольт.

Ток потребления типовой 1 Ампер. Максимальный ток потребления 1,5 Ампера.

Сброс модуля

Сброс модуля осуществляется по шине PC104 сигналом RESDRV, разъем J1, контакт B2.


По сбросу во все внутренние регистры, кроме ADDAT0 ... ADDAT7, записываются нули.

Для установки истинного значения битов STATCH регистра RD после сброса необходимо осуществить цикл чтения из регистров ADDAT0 ... ADDAT7.

1 П Внешние разъемы и переключатели

Расположение и назначение разъемов и переключателей на плате модуля RM64AD представлено на рисунке.

J9 J10 **Канал 3 Канал 4**

J3, J5, J6, J7, J8, J9, J10, J11, J12, J13 - разъемы IDC типа.

Нумерация разъемов J6, J7, J8, J9, J10, J11, J12, J13:

Нумерация разъемов Ј5, Ј3:

Разъем J1. PC104L

Номер контакта	Название контакта	Сигнал	Номер контакта	Название контакта	Сигнал
A1	IOCHECK	nc	B1	GND	GND
A2	SD7	SD7	B2	RESDRV	BRES
A3	SD6	SD6	В3	+5 V	+5V(VCC)
A4	SD5	SD5	B4	IRQ9	IRQ9
A5	SD4	SD4	B5	-5 V	nc
A6	SD3	SD3	В6	DRQ2	nc
A7	SD2	SD2	B7	-12 V	nc
A8	SD1	SD1	B8	SRDY	nc
A9	SD0	SD0	В9	+12 V	nc
A10	IOCHRDY	nc	B10	KEY(2)	GND
A11	AEN	AEN	B11	SMEMW	nc
A12	SA19	nc	B12	SMEMR	nc
A13	SA18	nc	B13	IOW	IWR
A14	SA17	nc	B14	IOR	IRD
A15	SA16	nc	B15	DACK3	nc
A16	SA15	nc	B16	DRQ3	nc
A17	SA14	nc	B17	DACK1	nc
A18	SA13	nc	B18	DRQ1	nc
A19	SA12	nc	B19	REFRESH	nc
A20	SA11	nc	B20	CLK	nc
A21	SA10	nc	B21	IRQ7	IRQ7
A22	SA9	SA9	B22	IRQ6	IRQ6
A23	SA8	SA8	B23	IRQ5	IRQ5
A24	SA7	SA7	B24	IRQ4	IRQ4
A25	SA6	SA6	B25	IRQ3	IRQ3
A26	SA5	SA5	B26	DACK2	nc
A27	SA4	SA4	B27	T/C	nc
A28	SA3	SA3	B28	BALE	nc
A29	SA2	SA2	B29	+5v	VCC
A30	SA1	SA1	B30	OSC	nc
A31	SA0	nc	B31	GND	GND
A32	GND	GND	B32	GND	GND

Примечание:

nc	_	Контакт свободный
GND	_	Цифровая земля (общий провод).
12V	_	Напряжение питания +12 В
-12V	_	Напряжение питания минус 12 В
-5V	_	Напряжение питания минус 5 В
BRES	_	Сигнал системного сброса
IOW	_	Сигнал записи портовых устройств
IOR	_	Сигнал чтения портовых устройств
BCLK	_	Сигнал тактирования шины
IOCHRDY	_	Сигнал готовности устройства. Позволяет медленным устройствам удлинять циклы системной шины
AEN	_	Сигнал разрешения адреса
SAx	_	Сигнал адреса х, где х=1-9
SDy	_	Сигнал данных у, где у=0-7
IRQz	_	Прерывание z, где z=3-7, 9
T/C	_	Terminal count

Разъем J2. PC104H

Номер контакта	Название контакта	Сигнал	Номер контакта	Название контакта	Сигнал
C1	GND	GND	D1	GND	GND
C2	-SBHE	-SBHE	D2	-MEMCS16	nc
C3	LA23	nc	D3	-IOCS16	-IOCS16
C4	LA22	nc	D4	IRQ10	IRQ10
C5	LA21	nc	D5	IRQ11	IRQ11
C6	LA20	nc	D6	IRQ12	IRQ12
C7	LA19	nc	D7	IRQ15	IRQ15
C8	LA18	nc	D8	IRQ14	IRQ14
C9	LA17	nc	D9	-DACK0	nc
C10	-MEMR	nc	D10	DREQ0	nc
C11	-MEMW	nc	D11	-DACK5	nc
C12	SD8	SD8	D12	DREQ5	nc
C13	SD9	SD9	D13	-DACK6	nc
C14	SD10	SD10	D14	DREQ6	nc
C15	SD11	SD11	D15	-DACK7	nc
C16	SD12	SD12	D16	DREQ7	nc
C17	SD13	SD13	D17	+5V	VCC
C18	SD14	SD14	D18	-MASTER	nc
C19	SD15	SD15	D19	GND	GND
C20	KEY(2)	GND	D20	GND	GND

Примечание:

GND – Цифровая земля (общий провод)

SD8...SD15 - Сигнал данных

IOCS16 – Ввод/вывод сигнал выбора устройства 16

IRQz – Прерывание z, где z=10-15

Разъем ЈЗ.

Выбор базового адреса.

Смотри раздел «Выбор базового адреса».

Разъем J4.

Технологический.

Разъем J5.

Технологический.

Номер контакта	Сигнал	Номер контакта	Сигнал
1	не использовать	2	не использовать
3	не использовать	4	не использовать
5	nc	6	nc
7	GND	8	VCC
9	nc	10	не использовать

GND – Цифровая земля (общий провод) VCC – Напряжение питания модуля

Контакты VCC, GND соединены с одноименными контактами разъемов PC104 (см.разъем J1, J2).

Разъем Ј6. Канал 0

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND0	10	REF I/O
11	AGND0	12	AGND0
13	VDD0	14	AGND0

Примечание:

AGND0–Аналоговая земля АЦП канала 0INA1...INA8–Аналоговый вход А (номер входа АЦП)REF I/O–Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD0 – Напряжение питания АЦП (выходной сигнал) канала 0

Разъем Ј7. Канал 1

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND1	10	REF I/O
11	AGND1	12	AGND1
13	VDD1	14	AGND1

Примечание:

 AGND1
 –
 Аналоговая земля АЦП канала 1

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REF I/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD1 – Напряжение питания АЦП (выходной сигнал) канала 1

Разъем J8. Канал 2

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND2	10	REF I/O
11	AGND2	12	AGND2
13	VDD2	14	AGND2

Примечание:

 AGND2
 –
 Аналоговая земля АЦП канала 2

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REFI/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD2 – Напряжение питания АЦП (выходной сигнал) канала 2

Разъем J9. Канал 3

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND3	10	REF I/O
11	AGND3	12	AGND3
13	VDD3	14	AGND3

Примечание:

 AGND3
 –
 Аналоговая земля АЦП канала 3

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REF I/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD3 – Напряжение питания АЦП (выходной сигнал) канала 3

Разъем Ј10. Канал 4

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND4	10	REF I/O
11	AGND4	12	AGND4
13	VDD4	14	AGND4

Примечание:

 AGND4
 –
 Аналоговая земля АЦП канала 4

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REF I/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD4 – Напряжение питания АЦП (выходной сигнал) канала 4

Разъем Ј11. Канал 5

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND5	10	REF I/O
11	AGND5	12	AGND5
13	VDD5	14	AGND5

Примечание:

 AGND5
 –
 Аналоговая земля АЦП канала 5

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REFI/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD5 – Напряжение питания АЦП (выходной сигнал) канала 5

*Разъем J*12. Канал 6

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND6	10	REFI/O
11	AGND6	12	AGND6
13	VDD6	14	AGND6

Примечание:

 AGND6
 –
 Аналоговая земля АЦП канала 6

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REF I/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD6 – Напряжение питания АЦП (выходной сигнал) канала 6

Разъем Ј13. Канал 7

Номер контакта	Название контакта	Номер контакта	Название контакта
1	AIN4	2	AIN5
3	AIN3	4	AIN6
5	AIN2	6	AIN7
7	AIN1	8	AIN8
9	AGND7	10	REF I/O
11	AGND7	12	AGND7
13	VDD7	14	AGND7

Примечание:

 AGND7
 –
 Аналоговая земля АЦП канала 7

 INA1...INA8
 –
 Аналоговый вход А (номер входа АЦП)

 REFI/O
 –
 Опорное напряжение 12-разрядного АЦП

(входной или выходной сигнал)

VDD7 – Напряжение питания АЦП (выходной сигнал) канала 7

1 1 Комплект поставки

- Модуль RM64AD
- Библиотека для программирования модуля (СИ)
- Руководство пользователя
- Ответные части разъемов (*KIT*) (по заказу)
- Корпус, источник питания (по заказу)

1 9 Варианты исполнения модуля

Модуль поставляется в следующих модификациях:

1. RM64AD – полный вариант,

диапазон рабочих температур: от 0°C до +70°C.

2. RM64ADX – не полный вариант, где X – количество каналов (X=1,...,7)

Суффикс -EXT – диапазон рабочих температур: от -40°C до +85°C

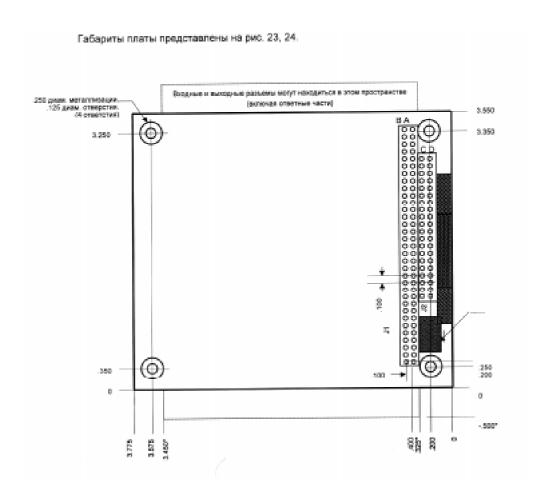
по всем контроллерам. все ответные части разъемов

Суффикс - KIT – все ответные части разъемов (РС104 – заказывается отдельно).

Разъёмы:

Разъёмы J5, J6, J7, J8, J9, J10, J11, J12, J13 прямые или угловые, или прямые вниз (по требованию заказчика).

Замечание: При заказе модуля необходимо соблюдать обозначения изделий данные


выше. Расположение выходных разъемов оговаривается отдельно (прямые,

угловые или прямые вниз).

Габаритные и установочные размеры

Габариты и установочные размеры платы показаны на рисунках.

Размеры приведены в дюймах. 1.000 дюйм = 25,4 миллиметра.

14. Приложения

